Weights Modulo 8 in Binary Cyclic Codes

R. J. McEliece Communications Systems Research Section

A new technique is provided for computing the weights modulo 8 in binary cyclic codes. These codes have proved to be the most important for GCF error detection/correction, and the method described will frequently aid in the detailed analysis of such codes.

I. Introduction

In this article we will obtain an improved method of calculating the value of the weights modulo 8 in a binary cyclic code. Such codes are the most important class of block codes known. For example, the (32,6) block code used in the high-rate telemetry system, the (1200,1167) BCH error detection code used on the GCF/NASCOM lines, and the (23,12) Golay code currently being studied for use on a concatenation scheme for MJS77 are all essentially binary cyclic codes. Weight information is a first step toward analyzing the error correction properties of a code.

If C is an (n, k) binary cyclic code, denote its weight enumerator by

$$A(Z) = \sum_{i=0}^{n} A_i Z^i$$

 A_i being the number of words of weight i in C. Knowledge of A(Z) is vital for evaluating the performance of the

code C, but often C contains so many codewords that a direct enumeration is not possible. Thus indirect methods must be adopted. In Section II we present a technique which can usually be used to evaluate A(Z) modulo $Z^{s}-1$. This information can then be added to other known information about A(Z) in the attempt to calculate A(Z). An example of the technique is given in Section III.

II. The New Technique

Let $c = (c_0, c_1, \dots, c_{n-1})$ be a codeword from C. We assume n is odd. Then the Mattson–Solomon polynomial of c,

$$s(x) = \sum_{i=0}^{n-1} s_i x^i$$

has the property that $c_j = s(\theta^j)$, where θ is a primitive nth root of unity in some extension of GF(2). The n coefficients s_i also lie in an extension of GF(2), and $s_i^2 = s_{2i}$

(subscripts mod n). Let us write the weight of c in its binary expansion

$$w(c) = \Gamma_1(c) + 2\Gamma_2(c) + 4\Gamma_4(c) + \cdots$$

where $\Gamma_{2r}(c) = 0$ or 1.

Let us first show that $\Gamma_1(c) \equiv s_0 \pmod{2}$. $\Gamma_1(c) \equiv w(c) \equiv c_0 + c_1 + \cdots + c_{n-1} \pmod{2}$. Thus

$$\Gamma_1(c) \equiv \sum_{i=0}^{n-1} \sum_{i=0}^{n-1} s_i \theta^{ji} \equiv \sum_{i=0}^{n-1} s_i \sum_{i=0}^{n-1} \theta^{ij} \pmod{2}. \tag{1}$$

Now since for $i = 1, 2, \dots, n-1$ θ^i is a zero of

$$\frac{x^n - 1}{x - 1} = \sum_{j=0}^{n-1} x^j$$

the inner sum in (1) is zero unless i = 0. Thus $\Gamma_1(c) \equiv ns_0 \equiv s_0 \pmod{2}$.

The simple argument above was extended by Solomon and McEliece (Ref. 1) to Γ_2 and to Γ_4 . They assumed that $\Gamma_1(c) = 0$. This assumption involves no essential loss of generality, since in a binary (n, k) cyclic code with n odd, either all words have even weight, or else exactly half have odd weight, the words of odd weight being the mod-2 complements of the words of even weight. Under this assumption, Solomon and McEliece proved

$$\Gamma_2(c) \equiv \sum \{s_i s_j : i < j, i + j \equiv 0 \pmod{n}\} \pmod{2}$$
 (2)

To give their expression for Γ_4 , we must first introduce some notation. Let P_r represent the set of unordered selections, with repetitions permitted, of r elements from the set $\{0, 1, 2, \dots, n-1\}$. Let P_r^0 be the subset of P_r of those selections whose entries sum to $0 \pmod{n}$. Thus if n=3, P_4 contains 15 selections but P_4^0 contains only 0000, 0012, 0111, 0222, and 1122. If $\alpha=(\alpha_1\alpha_2\alpha_3\alpha_4) \epsilon P_4$, define $s_\alpha=s_{\alpha_1}s_{\alpha_2}s_{\alpha_3}s_{\alpha_4}$. Then Solomon and McEliece proved that

$$\Gamma_4(c) \equiv \sum_{\alpha \in P_4^0} A_{\alpha} s_{\alpha} \pmod{2}$$
 (3a)

where the coefficients A_{α} are all zero, except that $A_{\alpha}=1$ in the four mutually exclusive cases

$$\alpha = (i, i, j, k)$$
 i, j, k distinct (3b)

$$\alpha = (i, i, i, j)$$
 i, j distinct (3c)

$$\alpha = (i, j, n - i, n - j) \ i, j \text{ distinct}$$
 (3d)

$$\alpha = (i, i, n - i, n - i) \text{ and } n \equiv 1 \pmod{4}.$$
 (3e)

Our object here is to show that (3a) can be greatly simplified. First, the sum in (3a) over the terms (3e) is, when $n \equiv 1 \pmod{4}$,

$$\sum s_i^2 s_{n-1}^2 \equiv \sum s_i s_{n-1} \equiv \Gamma_2(c) \pmod{2}$$

from (2). Next the sum over the terms (3d) is

$$\sum_{i < j} s_i s_{n-1} s_j s_{n-j}.$$

But this is just the second elementary symmetric function of the terms s_{α} , $\alpha \in P_{\alpha}^{0}$.

We now come to the terms (3b) and (3c). If α is a term in (3b), $s_{\alpha} = s_i^2 s_j s_k = s_{2i} s_j s_k$, since as mentioned above $s_i^2 = s_{2i}$. Similarly in case (3c) $s_{\alpha} = s_i^3 s_j = s_{2i} s_i s_j$. Of course these terms could "collapse" further if, for example, $2i \equiv j \pmod{n}$. Thus every term s_{α} from (3b) and (3c) "collapses" to a term of one of the forms $s_{\alpha} s_b s_c$ with a < b < c and $a + b + c \equiv 0 \pmod{n}$ or $s_{\alpha} s_b$ with a < b and $a + b \equiv 0 \pmod{n}$.

Thus we are led to define Q_r as the set of unordered selections, without repetition, of r objects from $\{0,1,\dots,n-1\}$, and Q_r^0 as the subset of Q_r of those selections whose entries sum to $0 \pmod{n}$. We have seen that every term $\alpha \varepsilon P_4^0$ from (3b) or (3c) collapses to a term in either Q_3^0 or Q_2^0 . Let us now see how many elements in P_4^0 can collapse to a particular element in Q_3^0 or Q_2^0 .

First consider Q_2^0 . A typical term is (i, j) with i < j and $i + j \equiv 0 \pmod{n}$. We easily see that the only terms in P_4^0 which collapse to (i, j) are:

$$\left(\frac{i}{4}, \frac{i}{4}, \frac{i}{2}, i\right) = \alpha_1$$
 $\left(\frac{j}{4}, \frac{j}{4}, \frac{j}{2}, i\right) = \alpha_2$
 $\left(\frac{i}{2}, \frac{i}{2}, \frac{j}{2}, \frac{j}{2}\right) = \alpha_3$

The last of these terms is not of form (3b) or (3c) and so does enter into the sum (3). The other two terms are distinct elements of P_4^0 , either of class (3b) or (3c), and since $s_{\alpha_1} + s_{\alpha_2} \equiv 0 \pmod{2}$, we see that the terms of P_4^0 which collapse to terms in Q_2^0 do not contribute to the sum (3).

Finally we consider those terms (3b) and (3c) of P_4^0 which collapse to a term in Q_3^0 A typical term in Q_3^0 is

(i, j, k) with i < j < k and $i + j + k \equiv 0 \pmod{n}$. The terms in P_4^0 which collapse to (i, j, k) are then

$$\left(\frac{i}{2}, \frac{i}{2}, \frac{j}{2}, j, k\right) = \alpha_1$$
 $\left(i, \frac{j}{2}, \frac{j}{2}, k\right) = \alpha_2$
 $\left(i, j, \frac{k}{2}, \frac{k}{2}\right) = \alpha_3$

Now α_1 , α_2 and α_3 are all distinct elements of P_4^0 belonging to either (3b) or (3c). And since $s_{\alpha_1} + s_{\alpha_2} + s_{\alpha_3} = s_i s_j s_k$, we see that the sum in (3) over the α 's in classes (3b) and (3c) is $\sum \{s_{\alpha}: \alpha \in Q_3^0\}$.

Finally let us define $\sigma_j^{(r)}(c)$ as the *j*th elementary symmetric function of the terms s_{α} , $\alpha \in Q_r^0$. We have then proved that the formula of Solomon–McEliece (3a) can be rewritten as:

$$\Gamma_{4}(c) \equiv \sigma_{1}^{(3)}(c) + \sigma_{2}^{(2)}(c) + (1+n_{1}) \sigma_{1}^{(2)}(c) \pmod{2}$$

$$\tag{4}$$

where $n = n_m \cdot \cdot \cdot \cdot n_2 n_1 1$ is the binary expansion of n. This is our main result. In Section III we give an example of the use of (4).

III. An Example

We will illustrate our result on the (17,8) cyclic code whose check polynomial $x^s + x^5 + x^4 + x^3 + 1$ is irreducible mod 2. It follows from the Mattson-Solomon results that every codeword $c_{\varepsilon}C$ has $s_j = 0$ except possibly for $j_{\varepsilon} \{1, 2, 4, 8, 16, 15, 13, 9\} = K$; i.e., $j \equiv 2^m \pmod{17}$ for $m = 0, 1, \dots, 7$. Furthermore for each such codeword there will exist a unique $x_{\varepsilon}GF(2^s)$ such that $s_{2^m} = x^{2^m}$.

Now we are ready to apply our formula for Γ_4 . The first term, $\sigma_1^{(3)}(c)$, will involve only those selections (i, j, k) from Q_4^0 , all of whose elements lie in the set K. But it is easily verified that no such tuples (i, j, k) exist. Thus $\sigma_1^{(3)}(c) = 0$ for all $c_{\varepsilon}C$. The next two terms are the first two elementary symmetric functions of the nonzero terms $\{s_{\alpha}: \alpha_{\varepsilon}Q_2^0\}$;

i.e., $\{s_1s_{16}, s_2s_{15}, s_4s_{13}, s_8s_9\}$ but since $s_{2^m} = x^{2^m}$ for some $x_{\varepsilon}GF(2^s)$ this set is $\{x^{17}, x^{17 \cdot 2}, x^{17 \cdot 4}, x^{17 \cdot 8}\}$. If $x \neq 0, x^{2^{8-1}} = x^{17 \cdot 15} = 1$ in $GF(2^s)$, and so x^{17} in fact lies in the smaller field $GF(2^s)$. In fact for every $y_{\varepsilon}GF(2^s) - \{0\}$, there are exactly 17 values of $x_{\varepsilon}GF(2^s) - \{0\}$ such that $x^{17} = y$. For every codeword c corresponding to such an x, then

$$\Gamma_4(c) = \sigma_2(y) + \sigma_1(y),$$

where $Z^4 + \sigma_1(y) Z^3 + \sigma_2(y) Z^2 + \sigma_3(y) Z + \sigma_4(y) = (Z - y) (Z - y^2) (Z - y^4) (Z - y^8)$ is the field polynomial for y.

Similarly, but more easily,

$$\Gamma_2(c) = \sigma_1(y).$$

Finally all that is needed is a list of the field polynomials of the 15 nonzero elements of $GF(2^4)$:

Polynomial		Number of distinct roots	Γ_{4}	Γ_2
Z^4	+ Z + 1	4	0	0
$Z^4 + Z^3$	+ 1	4	1	1
$Z^4 + Z^3 + Z^2 + Z + 1$		4	0	1
Z ⁴ +	$-\mathbf{Z}^2$ $+1$	2	1	0
$Z^{\scriptscriptstyle 4}$	+1	1	0	0

Thus we see that in the code C there are, apart from the all-zero word,

$$85 = 17 \cdot 5$$
 words with weight $\equiv 0 \pmod{8}$

$$68 = 17 \cdot 4$$
 words with weight $\equiv 2 \pmod{8}$

$$34 = 17 \cdot 2$$
 words with weight $\equiv 4 \pmod{8}$

$$68 = 17 \cdot 4$$
 words with weight $\equiv 6 \pmod{8}$

Since the BCH bound assures us that there are no words of weight less than 5 or greater than 12, the complete weight enumerator for C is

$$A(Z) = 1 + 68Z^6 + 85Z^8 + 68Z^{10} + 34Z^{14}$$

Reference

1. Solomon, G., and McEliece, R., "Weights of Cyclic Codes," J. Comb. Th. Vol 1, pp. 459–475, 1966.